
ISSN 1754-3657 (Print)
ISSN 1754-3665 (Online)

C omputer S cience for F un I ssue 28

Babbage’s adder

Custard computers

I Ching binary
cs4fn.blog/cunningcontraptions/

C unning
 C omputational
C ontraptions

https://cs4fn.blog/cunningcontraptions/

An ode to
technology
Cunning contraptions date back to ancient civilisations.

C unning
C omputational
C ontraptions

Some have been bodged together, Wallace
and Gromit style with little hope of working
long term, others have been marvellous
miracles of engineering. Some just
demonstrated an idea, some entertained,
the best have been immensely useful and

Image by dawnydawny from Pixabay

Image by Devanath from Pixabay

completely changed the way we live. This
issue is about contraptions with links to
computation, if not always computers
themselves. Charles Babbage gets a special
place as, along with other computational
inventions, he was the one who first

worked out how a general-purpose
computer might work and even designed
one that would have worked if built despite
it being the age of cogs and steam. We
also explore how to do computation with
marbles and custard, though not together…

From the dawn of humanity people have created cunning computational contraptions.

People have always been fascinated
by automata: robot-style contraptions
allowing inanimate animal and human
figures to move, long before computers
could take the place of a brain.

Records show they were created in
ancient Egypt, China, and Greece. In the
renaissance Leonardo designed them
for entertainment, and more recently
magicians have bedazzled audiences
with them.

The island of Rhodes was a centre for
mechanical engineering in Ancient
Greek times, and the Greeks were
great inventors who loved automata.
According to an ode by Pindar the
island was covered with automata:

 The animated figures stand.

 Adorning every public street.

 And seem to breathe in stone, or

 move their marble feet.

2 cs4fn.blog

https://cs4fn.blog/

Weaving, in the form of
the Jacquard loom, with
its swappable punch cards
controlling the loom’s patterns
inspired Charles Babbage. He
intended to use the same kind
of punch card to store programs
in his Analytical Engine, which
had it been built would have
been the first computer.
However, weaving had a much
more direct use in computing
history. Weaving helped get us
to the Moon.

In the 1960s, NASA’s Apollo moon mission
needed really dependable computers.
It was vital that the programs wouldn’t
be corrupted in space. The problem was
solved using core rope memory.

Core rope memory was made of small
‘eyelets’ or beads of a metal called ferrite
that can be magnetised and copper wire
which was woven through some of the
eyelets but not others. The ring-shaped
magnets were known as magnetic cores.
An electrical current passing through the
wires made the whole thing work.

3

Image by WikiImages from Pixabay

C ore rope
 memory
by Jo Brodie and Paul Curzon, Queen Mary University of London

Representing binary
Both data and programs in computers are
stored as binary: 1s and 0s. Those 1s and
0s can be represented by physical things
in the world in lots of different ways. NASA
used weaving. A wire that passed through
an eyelet would be read as a binary 1
when the current was on but if it passed
around the eyelet then it would be read as
0. This meant that a computer program,
made up of sequences of 1s and 0s, could
be permanently stored by the pattern that
was woven. This gave read-only memory.
Related techniques were used to create
memory that the computer could change
too, as the guidance computer needed
both.

The memory was woven
for NASA by women
who were skilled textile
workers. They worked
in pairs using a special
hollow needle to thread
the copper wire through
one magnetic core and
then the other person
would thread it back
through a different one.

The program was first developed on a
computer (the sort that took up a whole
room back then) and then translated into
instructions for a machine which told the
weavers the correct positions for the wire
threads. It was very difficult to undo a
mistake so a great deal of care was taken
to get things right the first time, especially

as it could take up to two months to
complete one block of memory. Some
of the rope weavers were overseen by
Margaret Hamilton, one of the women
who developed the software used on
board the spacecraft, and who went
on to lead the Apollo software team.

The world’s first portable computer?
Several of these pre-programmed core
rope memory units were combined and
installed in the guidance computers of the
Apollo mission spacecraft that had to fly
astronauts safely to the Moon and back.
NASA needed on-board guidance systems
to control the spacecraft independently
of Mission Control back on Earth. They

needed something that didn’t take
up too much room or weigh

too much, that could survive
the shaking and juddering
of take-off and background
radiation: core rope memory
fitted the bill perfectly.

It packed a lot* of information
into a small space and was very

robust as it could only break if a wire
came loose or one of the ferrite eyelets
was damaged (which didn’t happen).
To make sure though, the guidance
computer’s electronics were sealed from
the atmosphere for extra protection.
They survived and worked well, guiding
the Landing Modules safely onto the Moon.

One small step for man perhaps, but the
Moon landings were certainly a giant leap
for computing.

To weave your own core rope
memory or for further reading
about computing in space, go to
cs4fn.blog/cunningcontraptions/

* well, not by modern standards!
The guidance computer contained
only around 70 kilobytes of memory.

3 @cs4fn

https://cs4fn.blog/cunningcontraptions/
https://twitter.com/cs4fn

Charles Babbage famously
designed the first computer:
a steam powered contraption
that was never built. At its core
was something very simple and
elegant: a cunning contraption
that allowed his machines to
store numbers and do arithmetic,
all made of Victorian tech: metal
wheels and levers.

Babbage’s Analytical Engine, had it been
built, would have been the first working
general-purpose computer. The size of a
factory, and powered by a steam engine,
it was the ultimate cunning contraption.
A giant whirring, clanking, puffing
mechanical brain. Babbage’s first attempt
at mechanical computation, though, was
a simpler machine, the Difference Engine.
It could only do a fixed, if very useful,
kind of calculation. It computed what are
called polynomials: patterns of additions
and multiplications. It used a complicated
adding mechanism. Later, whilst working
on designs for his ambitious Analytical
Engine he thought of a much simpler
adder (described below). His second
Difference Engine used this new adder
and so needed about 16,000 fewer
parts! The Science Museum built it
in the twentieth century.

Representing Numbers
First he had to devise a way to represent
numbers. Unlike modern computers
which use binary, so only two digits,
Babbage stuck to decimal. He was going
to do all his calculations using our normal
ten digits, 0 - 9. But how? His solution was
to use metal cog-like wheels. His wheels
had 40 teeth corresponding to the digits
0 to 9 repeated four times. To get the idea

B abbage’s
adders

by Paul Curzon, Queen Mary University of London and
Adrian Johnstone, Royal Holloway, University of London

4 cs4fn.blog

https://cs4fn.blog/

 @cs4fn

of how they worked, imagine a wheel
with only 10 teeth, each with a digit 0-9 in
order, next to a tooth. The wheel lays flat
and one digit faces you. That digit is the
number that the wheel represents. Turn it
one place to the left and it represents one
digit higher. Turn it a place to the right and
it represents one digit lower.

That is fine for numbers between 0 and 9.
For larger numbers, just do as we do: use
the decimal place system where the value
of a digit changes with its position. That
first wheel is in the ones row so stands for
0-9. Put a wheel above it in a 10s row and
it stands for 10 times the value shown.
If a 5 is facing you on that wheel it stands
for 50. You can now represent numbers
0 - 99. Put more wheels on top and you
can represent hundreds, thousands, and
so on.

It’s a neat way of representing numbers
using the system we do (though our
numbers run right to left not bottom
to top). It makes it not only easy for a
machine to manipulate the numbers by
turning the wheels, but also easy for a
human operator to read the numbers.

His Difference Engine used several
stacks of them, but Babbage envisaged a
gigantic room-sized data store of column
after column of these number wheels as
the memory of his analytical engine, each
column storing one potentially very large
number.

A machine that can count
We now have a way to represent numbers
but it isn’t yet enough to allow a machine
to manipulate them automatically.
As it stands it can’t even count properly.
We have seen only how to count on one
wheel, so only up to 9: every time we turn

Smoke image by Hanjörg Scherzer from Pixabay

a crank the 1s wheel turns one notch and
so the number represented moves on
one. However, we need the other wheels
to turn too, but only when the wheel
below turns from a 9 to a 0 (so should
really become 10). We need a mechanism
to carry up to the wheel above.

Babbage did this by adding a ridge (a
‘nib’) on the wheel that triggered the carry.
When the wheel got to 0, the nib caught
against a mechanism above and pushed
it, before allowing it to spring back. That
nudged the wheel above along one place
as required. The 1s wheel was controlled
by the crank. The 10s wheel was turned by
the 1s wheel moving to 0. The 100s wheel
was turned by the 10s wheel moving to 0,
and so on. Babbage had a machine that
could count!

A machine that can add
The next problem is how to add numbers
stored on wheels. Imagine two wheels,
interlocked by their teeth, When one
is turned it turns the other the same
amount. However if you lift one of the
wheels they no longer interlock and
move independently.

To do addition, the first wheel is used to
hold the number to be added. The second
holds the total so far: the answer. That
answer wheel starts off set to 0. Now,
with the wheels interlocked, turn the first
wheel one position at a time counting
up to the first number of the addition.
It turns the answer wheel exactly the
same number of positions transferring
the number on to it.

Oops. When cogs interlock, the second
wheel turns in the opposite direction
to the first! Our machine is subtracting!
To make it add, you need a connecting

wheel between them. The middle wheel
then turns backwards, turning the answer
wheel forwards as required. With three
wheels like this, any number on the first
wheel is added to the answer wheel.

To add a second number, just lift the first
wheel to disconnect it, spin it back to
zero, drop it back in place and turn it to
the second number. The answer wheel
then holds the sum of both numbers.
If you want to add more numbers, just
keep doing this, loading one number at
a time onto the first wheel. Each time
the total passes 10, the carry mechanism
passes the 10 onto the higher wheel and
the full decimal total is stored up the stack
of wheels.

We have a machine for doing addition!

A machine that can multiply
Babbage’s machines could multiply
as well. How do you do multiplication
on wheels? Well, multiplication is just
repeated addition. If you want to work out
5 x 3, then it can be calculated as 5 + 5 +
5. So multiplication can simply be done
using the adder, adding the same number
over and over again. A counter keeps track
of how many times to add it. There are
faster ways to multiply though. For the
Analytical Engine, Babbage designed an
efficient table-based multiplier that he
was justifiably very proud of.

Putting it together
Put this together and you have both a
number store (a computer memory) and
temporary storage areas (registers). You
can transfer numbers from one place to
another in the machine, and you have
the basics of an arithmetic unit that can
do calculations. That is about as far as
Babbage managed to build. However,
he also envisioned programs on punch
cards that determined what instruction
to execute, mechanisms that allowed
instructions to make decisions, and to
repeat instructions…everything needed
for a general-purpose computer.

Sadly, only parts of his Analytical Engine
were ever built, the Victorians did not start
the digital age, and we had to wait nearly
a century for the first working computers.

Babbage’s wheel from
a 3D model by Adrian
Johnstone.

5 @cs4fn

https://twitter.com/cs4fn

6 www.cs4fn.org

Charles Babbage is famous for
his amazing technical skills in
designing a computer, but also
infamous for his apparent spiky
and obsessive personality.

He certainly seems to have had poor
social skills in that he often immensely
irritated the people who funded his work.
Part of the reason he never managed
to complete a working version of his
computer is that his funders pulled the
plug on him. If only he had had better
people skills to complement his technical
skills and creativity, perhaps we would
have had computers a century earlier!

However, perhaps we should be less
harsh. He wasn’t a total social misfit:
his salons (Victorian high society parties)
were extremely popular, and attended
by what would now be considered
celebrity A-listers. They often centred
around demonstrations of science and
engineering wonders, so presumably he
could be the life and soul of the party…
as long as he had a technological wonder
to talk about. The young Ada Lovelace
attended one such salon and was
enthralled by his machines. Encouraged
by her mathematically trained mother,
Lady Byron, she studied maths and in
1840 collaborated with Babbage on a
description of his Analytical Engine.

Image by Goran Horvat from Pixabay

B abbage’s
triumph over
brutal reality
by Adrian Johnstone, Royal Holloway, University of London
and Paul Curzon, Queen Mary University of London

More to the point, if you consider the
context of Babbage’s life, he suffered
extremes of grief. In one year alone, 1827,
he buried three of his children as well as
his wife. Of his eight children only three
survived beyond the age of ten. That was
the brutal reality of the pre-antibiotic
world.

In this context perhaps it is better to think
about his work and achievements, as a
response to adversity. That he achieved
so much is a triumph of ambition over
terrible loss.

6 cs4fn.blog

https://cs4fn.blog/

7 @cs4fn

Some 1950s computers used tubes filled with mercury as a
memory to store numbers. Mercury is a metal that is liquid at
room temperature. It’s also known as quicksilver as it flows very
easily, but in computing it was actually used to trap information.

Quicksilver
memory
by Jo Brodie and Paul Curzon, Queen Mary University of London
and Adrian Johnstone, Royal Holloway, University of London

Early computers needed a way to store
data that would survive indefinitely, even
if the computer was stopped. ‘Delay
lines’ provided the solution. Data arriving
electronically at a mercury delay line
struck a converter (called a ‘transducer’)
which converted the information to a
sound pulse in the mercury. The sound
travelled through the tube at the speed
of, yes, sound and when the pulse reached
the other side it hit another transducer
and was returned to its electronic form.
That might not sound (sorry) like much
of a delay but compared to the speed that
an electrical signal moves through a wire
(a fraction of the speed of light), it’s like a
gentle stroll. Once inside the mercury tube
the sound pulses could be looped back
and forth, safely ‘parked’ until needed.
The computer would use its clock to help
it count how many pulses had passed and
a microphone listened for the right time to
release it from the memory store back into
the circuitry to do a calculation with it.

Think about tennis serving machines
that shoot balls at you. If you put one in
a squash court, then a ball being fired
will bounce back and forth off the walls
but quickly drop to the floor. A delay line
works like having two machines facing
each other. One fires a ball so that it hits
a lever (the transducer) which tells the
other machine to fire a ball back, which
then hits a lever on the first machine...
and so on. Now there is always a ball in
flight (a pulse in the delay line) because
the motion of the original ball is detected,
and used to make a new ball (pulse) that
is injected back into the system. Start the
first machine by making it fire balls in an
initial ball-no-ball pattern and the system
stores that pattern, that information.

Using cunning contraptions, motion can
keep information firmly in one place.

Mercury is expensive, so computer pioneer Alan Turing recommended using gin
instead. He claimed its mix of alcohol and water gave perfect properties for the job
while being so much cheaper.

Image by Roman Shashko from Pixabay

7 @cs4fn

https://twitter.com/cs4fn

8 www.cs4fn.org

Charles Babbage had an obsession for precision and high standards because if
his machines were to work, they needed it. One of his indirect contributions to
contraption construction the world over concerned the humble screw. We take
screws pretty much for granted now, especially the idea that there are standard sizes.
Lose one when putting together that flatpack furniture and you can easily get another
that is identical. Before the 1800s though that was not the case. Screws made by
different people were unlikely to be the same and might only fit the specific thing
they were hand made for. Babbage’s demands for precision helped change that.

Im
age by Alexas_Fotos from

 Pixabay

The taming
of the screw
by Paul Curzon, Queen Mary University of London

The key person in the invention of the
standard screw was Stockport engineer, Sir
Joseph Whitworth. Having worked as a boy
in his uncle’s Derbyshire cotton mills, he
was fascinated by the machinery there. He
realised the accuracy of the workmanship
in the machines was poor and needed to
be better.

The Difference Engine was built by Joseph
Clement in the years up to 1833, and who
should be there helping him do so, having
moved on to start a career as a skilled
mechanic? None other than Whitworth.
For Babbage’s machines to work they
needed precision engineering of lots
and lots of identical parts and to levels
of accuracy far greater than previously
needed. For the Difference Engine Clement
and Whitworth, with their shared passion

for accuracy, were up to the challenge.
This work showed the coming need for
ways to engineer ever more precisely, and
to be able to repeat that work…a challenge
Whitworth pursued for the rest of his life.

Also famous for inventing the first ever
truly accurate “sniper rifle” he went on to
create a standard thread for screws that
then became the world’s first national
screw thread standard: the British Standard
Whitworth system. It suddenly meant
screws could be made by mass production,
bought from anywhere, and guaranteed to
fit precisely for whatever job was needed.
Whilst sadly the need to mass produce
computers didn’t materialise, the standard
was adopted for building ships, trains…
for industry throughout the nation, making
Great Britain’s industry more efficient

and so more competitive. Now we rely
on the idea of national and international
standards like this not just for hardware but
for software too. Standards help ensure our
computers work but also keep us safe.

The equivalent of this engineering
precision is still lacking in the development
of software though, much of which is
buggy and developed to poor standards by
people hacking out software that may or
may not work. High standards tend only to
apply in safety-critical software, and then
often poorly. We need the next generation
of programmers to have the same
obsession for precision of Babbage and
Whitworth and apply it to the development
of software, ending the age of buggy,
poorly developed software.

8 cs4fn.blog

https://cs4fn.blog/

9 @cs4fn

Mary Coombs,
teashops and Leo
the computer
by Jo Brodie, Queen Mary University of London

J Lyons and Company, a catering company
with a chain of over 200 tea shops in
London, wanted to increase its sales
and efficiency. With amazing foresight,
they realised computers, then being
used only for scientific research in a few
universities, would help. They bought the
technology from Cambridge University,
built their own and called it LEO (the Lyons
Electronic Office). They hoped it would
do calculations much more quickly than
the 1950s clerks could, using calculating
machines. But it could only happen if
Lyons could find people to program it.
At the time there were only a handful of
people in the world who were ‘good at
computers’ (programmer didn’t exist as a
job yet) so instead they had to find people
who could be good with computers and
train them for the job. Lyons created a
Computer Appreciation Course which
involved a series of lectures and some
homework, all designed to find staff within
the company who could think logically and
would learn how to write programs for LEO.

One of those was Mary Coombs. Born in
1929, she studied at Queen Mary University
of London in the late 1940s. You might
think, given that this is about a computer,
that she studied computer science, but
she actually studied French and History.
She couldn’t study computer science: what
we’d call a computer science course didn’t

Tea shops played a surprisingly big role in the history of computing. It was all down to
J. Lyons & Co., a forward thinking company that bought one of the first computers to
use for things like payroll. Except they had a problem. Computers need programs, but
no such programs existed, and neither did the job of programmer. How then to find
people to program their new-fangled computer? One person they quickly found, Mary
Coombs, suited the job to a T, becoming the first female commercial programmer.

exist. There wasn’t one anywhere until 1953,
when the University of Cambridge opened a
Diploma in Computer Science.

By then, Mary was already working at Lyons.
She’d had a holiday job there in 1951, as a
clerk (in the Ice Cream Sales department)
as she finished her degree. A year later
she returned to the company where her
career changed direction. In addition to
her language skills, she was good at maths
so transferred to Lyon’s Statistical Office.
That’s where she heard about LEO and the
need for programmers to learn about it and
help test it as it was being built and refined.
Intrigued, she signed up for the company’s
first computer appreciation course, did
well, and was one of only two people on the
course then offered a job on the project. As
a result she became the first woman to work
on the LEO team as a programmer and the
first female commercial programmer in the
world.

LEO was an enormous computer, built
from several thousand valves, and took
up an entire room, though it could only
store a few kilobytes of memory. It was
also a little temperamental. It needed to
be very reliable if it was going to be of any
use, so it underwent months of testing and
improvement, with Mary’s help, before it
was put to work on solving real problems,
again with Mary and others on the team
writing the programs for everything it did.

One of its first tasks was to make sure
everyone got paid! LEO was able to
calculate forty people’s payslips in one
minute (one every 1.5 seconds) where
previously it would have taken one clerk
six minutes to do one: a huge improvement
in efficiency for Lyons.

LEO was both pioneering and a big
success, but the real pioneers were the
programmers like Mary. They turned
computers, intended to help scientists
win Nobel prizes, into ones that helped
businesses run efficiently, ensuring people
got paid. Obvious now, but remarkable in
the 1950s.

Image by Pexels from Pixabay

9 @cs4fn

https://twitter.com/cs4fn

Binary is at the core of the digital
world, underpinning everything
computers do. The mathematics
behind binary numbers was
worked out by the great German
mathematician Gottfried Wilhelm
Leibniz in the 17th century. He
even imagined a computing
machine a century before
Babbage, and two centuries
before the first actual computers.
He was driven in part by an
ancient Chinese text used for
divination: predicting the future.

I Ching
Leibniz was interested in the ancient
Chinese text, the I Ching because he noticed
it contained an intriguing mathematical
pattern. The pattern was in the set of 64
symbols it used for predicting the future.
The pattern corresponded to the counting
sequence we now know of as binary
numbers (see I Ching binary, overleaf).

Leibniz was obviously intrigued by the
patterns as a sequence of numbers.
Already an admirer of the great Chinese
philosopher, Confucius, he thought
that the I Ching showed that Chinese
philosophers had long ago thought
through the same ideas he was working
on. Building on the work of others who
had explored non-decimal mathematics,
he worked out the maths of how to
do calculations with binary: addition,
subtraction, multiplication, and division
as well as logical operations such as
‘and’, ‘or’ and ‘not’ that underpin modern
computers.

Algorithms embedded in machines
Having worked out the mathematics
and algorithms for doing arithmetic
using binary, he then went further.
He imagined how machines might
use binary to do calculations. He also
created very successful gadgets for
doing arithmetic in decimal, but saw
the potential of the simplicity of the
binary system for machines.

He realised that binary numbers could
easily be represented physically as
patterns of marbles and the absence of
marbles. These marbles could flow along
channels under the power of gravity
round a machine that manipulated them
following the maths he had worked out.

His computer would
have been a giant
marble run!
A container would hold marbles at the top
of a machine. Then, by opening holes in
its base above different channels, a
binary number could be input into the
machine. An open hole corresponded to
a 1 (so a marble released) and a closed
hole corresponded to a 0 (no marble).
The marbles rolled down the channels with
each channel corresponding to a column in
a binary number. The marbles travelled to
different parts of the machine where they
could be manipulated to do arithmetic.
They would only move from one column
to another as a result of calculations, such
as carry operations.

10 www.cs4fn.org

Predicting
the future
M arble runs,
binary and
the I Ching
by Paul Curzon, Queen Mary University of London

10 cs4fn.blog

https://cs4fn.blog/

Addition of digits in binary is fairly simple:
0+0 = 0 (if no marbles arrive then none
leave); 0+1 = 1+0 = 1 (if only one marble
arrives then one marble leaves; (1+1 = 2
= 10) if two marbles arrive in a channel
then none leave that channel, but one
is passed to the next channel (a carry
operation). The first rules are trivial, open
the holes and either a marble will or will
not continue. Adding two ones is a little
more difficult but Leibniz envisioned a
gadget that did this, so that whenever two
marbles arrived in a channel together,
one was discarded, but the other passed
to the adjacent channel. By inputting
two binary numbers into the same set
of channels connected to a mechanical
gadget doing this addition on each
channel, the number emerging is a new
binary number corresponding to the sum.

Multiplication by two can be done by
shifting the tray holding the number
along a place to the left. In decimal, to
multiply a number by ten, we just put a 0
on the end. This is equivalent to shifting
the number to the left: 123 becomes
1230. In binary the same thing happens

when we multiply
by 2: put a 0 on the
end so shift to the
left and the binary
number is twice as
big (11 meaning 2+1
= 3 becomes 110
meaning 4+2+0 =
6). Multiplication of
two numbers could
therefore be done
by a combination
of repeated shifts of
the marbles of one
number, releasing

copies of it or not based on the positions
of the 1s in the other number. The series
of shifted numbers were then just added
together. This is just a simplified version of
how we do long multiplication.

To multiply 110 by 101, you multiply 110 by
each digit of 101 in turn. This just involves
shifts, and then discarding or keeping
numbers. First multiply 110 by 1 (the ones
digit of 101) giving 110. Write it down.
Now shift 110 one place to give 1100 and
multiply by 0 (the twos digit of 101). This

just gives 0000. Write it below the previous
number. Shift 110 by another place to
give 11000. Multiply it by 1 (the fours digit
of 101). That gives 11000. Write it down
below the others. Add all three numbers
to get the answer.

The basics of a computer
Leibniz had not only worked out binary
arithmetic, the basis of a computer’s
arithmetic-logical unit (ALU), he had also
seen how binary numbers could flow
around a machine doing calculations.
Our computers use pulses of electricity
instead of marbles, but the basic
principles he imagined are pretty close
to how modern computers work: binary
numbers being manipulated as they flow
from one computational unit to the next.
Leibniz didn’t make his machine, it was
more a thought experiment. However,
helped by I Ching, a book for divining
the future, he did essentially predict how
future computers would work.

11 @cs4fn

Im
age by Sergio Cam

acho Cam
acho S. A. from

 Pixabay

 110

 X 101

–—------

 110

 0000

+ 11000

—--------

 11110

11 @cs4fn

https://twitter.com/cs4fn

12 www.cs4fn.org

I Ching binary
by Paul Curzon, Queen Mary University of London

I Ching is one of the oldest Chinese texts.
The earliest copies date from around 3000
years ago. It uses 64 hexagrams: symbols
consisting of six rows of lines (see right).
Each row is either a solid horizontal line or
two shorter lines with a gap in the middle.
The 64 hexagrams are all the possible
symbols that can be made from six rows
of lines in this way. In I Ching, they each
represent possible predictions about the
future (a bit like horoscopes). To use
I Ching, a series of hexagrams were
chosen. This was done in some unknown
but random way, using stalks
of the Yarrow plant, standing in for dice.
The chosen hexagrams then told the
person something about their future.

In the earliest versions of I Ching, the
order of the hexagrams suggests that
they were not thought of as numbers as

such. However, in a later version, from
around 1000 AD the order in which they
appear is different. Thought to be written
by a Chinese scholar, Shào Yōng, it is this
version that Leibniz was given and that
aroused his interest because the order
of the hexagrams follows the pattern
we know of as binary (see ‘Predicting
the future’, previous page). Shào Yōng
had apparently picked the sequence
deliberately because of the binary pattern,
so understood it as a counting sequence,
if not necessarily how to do maths with it.

How do the hexagrams correspond to
binary? It is not in the lines themselves
but the pattern of line breaks down the
middle that matters. Think of a break in
the lines as a 0 (yin) and no break as a
1 (yang). The order, as Leibniz realised,
is a counting system, equivalent to our
decimals but where you only have two
digits (0 and 1) rather than our ten digits
(0...9).

Whereas in decimal each column of a
number like 123 represents a power of 10
(ones, tens, hundreds, …) in binary each
column represents a power of 2 (ones,
twos, fours, eights, …). To work out the
value that the number represents you

multiply each digit by its column value
and add the results. So in decimal, 123
represents one hundred plus two tens
plus three ones (one hundred and twenty
three). 1011 in decimal represents one
thousand plus no hundreds plus one ten
plus a one (one thousand and eleven).
In binary, however, 1011 represents
instead one eight plus no fours plus
one two plus a one (8+0+2+1) so eleven.
It is just a different way of writing down
numbers.

Investigating the I Ching pattern helped
Leibniz to work out the mathematics of
binary arithmetic and on to thinking about
machines to do calculations using it.

I Ching the ancient
Chinese divination text,
several thousand years
old, is based on a binary
pattern…

Im
age by Sushuti from

 Pixabay

I Ching Hexagrams for numbers 0 to 7

12 cs4fn.blog

https://cs4fn.blog/

13

It seems rather ironic his ire was directed
at the barrel organ as they share a crucial
component with his idea for a general
purpose computer - a program. Anyone
(even monkeys) can be organ grinders, and
so play the instrument, because they are
just the power source, turning the crank to
wind the barrel. Babbage’s first calculating
machine, the Difference Engine was
similarly powered by cranking a handle.

The barrel itself is like a program. Pins
sticking out from the barrel encode the
series of notes to be played. These push
levers up and down, which in turn switch
valves on and off, allowing air from
bellows into the different pipes that make
the sounds. As such it is a binary system
of switches with pins and no pins round
the barrel giving instructions meaning on
or off for the notes. Swap the barrel with
one with pins in different positions and
you play different music, just as changing
the program in a computer changes what
it does.

Babbage’s hate of these music machines
potentially puts a different twist on Ada
Lovelace’s most visionary idea. Babbage
saw his machines as ways to do important
calculations with great accuracy, such as

Charles Babbage found barrel organs so incredibly
irritating that he waged a campaign to clear them
from the streets, even trying to organise an act of
parliament to have them banned. Presumably, it wasn’t
the machine Babbage hated but the irritating noise
preventing him from concentrating: the buskers in the
streets outside his house constantly playing music was
the equivalent to listening to next door’s music through
the walls. His hatred, however, may have led to Ada
Lovelace’s greatest idea.

 @cs4fn

Image by Alistair McIntyre from Pixabay

for working out the navigation tables ships
needed to travel the world. Lovelace, by
contrast, suggested that they could do
much more and specifically that one day
they would be able to compose music.
The idea is perhaps her most significant,
and certainly a prediction that came true.

We can never know, but perhaps the idea
arose from her teasing Babbage. She was
essentially saying that his great invention
would become the greatest ever music
machine…the thing he detested more
than anything. And it did.

Ada and the
music machine
by Paul Curzon, Queen Mary University of London

Babbage’s
barrels
by Adrian Johnstone, Royal
Holloway, University of London
and Paul Curzon, Queen Mary
University of London

Despite his hatred of Barrel organs,
Babbage used barrels with relocatable
pins in his machines. They worked in a
similar way to a music box, where the
pins flip the teeth of a metal comb to
sound a note and by moving the pins
you get a different tune. In Babbage’s
version the barrel’s pins push levers
that send information round the
machine, determining what it does.

By programming the positions of the
pins, different overall operations are
created from the combinations of lever
pushes. This is a similar idea to what
later became called microcoding, in
modern computers, where very simple
low level instructions are used to
program the operations available
in a computer’s instruction set.

Image by YMonika Y Y Schröder Y from Pixabay Image by Holger Schué from Pixabay

13 @cs4fn

https://twitter.com/cs4fn

14 www.cs4fn.org

A custard
computer
by Paul Curzon, Queen Mary University of London
This simplistic custard contraption is inspired by a more sophisticated custard
computer invented by Adrian Johnstone, Royal Holloway, University of London.

Babbage worked out how to make a
computer using wheels. How might you
make a general purpose digital computer
out of custard? (It sounds more fun!)
Adrian Johnstone at Royal Holloway has
designed one and if built it would look
something like our above description, like
something from Willie Wonka’s chocolate
factory.

Here we give a slightly simplistic version.
The first step is to have something to
represent 0 and 1. That’s easy with
custard: no custard in a storage tank is a
0 and custard is a 1. Out of that you can
represent numbers using collections
of such tanks: lots of tanks containing
custard or no custard, with a code (binary)
giving them meaning as numbers.

Once you have a way to represent
numbers, the next step to making a
computer is to make the equivalent of
transistors. Transistors are just switches,

but ones that revolutionised electronics
to the point that they have been hailed
as one of the greatest inventions ever.
Starting with humble transistors,
computers (and lots more) can be built.

Transistors have three inputs. One acts
as the data input, or source, connected
ultimately to the source of the current (in
our case the vat of custard). Another, the
drain, connects ultimately to the place
the current drains to (in our case the lake
of custard). A third input is the gate. It
switches the transistor on and off, either
allowing current (custard) to flow towards
the drain or not. The gate thus acts as the
switch to allow custard to flow.

One way to make a custard transistor
would be to use a contraption based on
your toilet but full of custard (don’t think
about that too much). Look in your toilet
cistern and see how it switches water
on and off when you flush the toilet to

get the idea. For a (custard) transistor,
have a small tank of custard with a ball
floating on the surface. It acts as the gate.
Fastened to the end of the ball is a lever
The lever’s other end can push up against
the end of the pipe that runs from source
to drain, blocking the flow. When the tank
is full of custard it pushes the other end of
the lever down, letting custard flow. If the
tank empties then the ball drops, so the
other end of the lever rises and blocks the
flow.

Transistors have been
hailed as one of the
greatest inventions
ever.

Imagine a room-sized vat of custard suspended from the
ceiling. Below are pipes, valves and reservoirs of custard.
At the bottom is a vast lake where the custard collects
as it splurges out of the pipes. A pump sucks custard
back up to the vat on the ceiling once more. Custard
flows, sits, splurges…all the while doing computation.

Transistor symbol by Clker-Free-Vector-Images from Pixabay

14 cs4fn.blog

https://cs4fn.blog/

15 @cs4fn

Droplet im
age by freddy urbina from

 Pixabay

There are two kinds of transistors. They
differ in that the gate just operates in
opposite fashions. With one kind, custard
can flow from source to drain only when
there is current (custard) at the gate (as
above). In the other, custard flows only
when there is no custard at the gate.

Once you have (custard) transistors, you
can make (custard) logic gates (NOT,
AND, OR,...). A (custard) NOT, for example,
would need to let custard into its out pipe
only if there were no custard on its input
pipe (and vice versa). We can do this using
a transistor with the NOT circuit’s input
connected to the gate, and where custard
flows only when the gate has no custard.
The drain of the transistor becomes the
output of the NOT circuit. The source
of the transistor connects to the vat of
custard to provide the custard that will
flow when the transistor switches on.
When custard arrives at the gate which is

acting as a switch, it stops custard flowing
to the drain, and vice versa, as required.

AND logic needs to let custard out only
when there is custard at both its input pipes.
OR logic allows custard through when there
is custard at either of its input pipes. This
can be done with appropriate plumbing
together of the transistors as follows.

A (custard) AND uses two transistors
It allows custard to flow when there is
custard at both gates which are the input
pipes of the AND circuit. Connect one
input of the AND circuit to the gate of the
first transistor with the source connected
to the vat of custard. Connect its output
to the source of the second transistor.
The gate of this second transistor is linked
to the second input of the AND. Custard
will flow from the vat down towards the
drain only when there is custard at both
gates. If either gate has no custard, then

the custard will not flow, just as required
for custard AND logic. We will leave you to
work out how to make (custard) OR logic.

Once you can create gadgets that do
(custard) NOT, AND and OR, you can then
start to build more interesting circuits
by combining them: building up the
components of a computer like (custard)
adders and (custard) multipliers, circuits
that compare numbers and ones that
trigger custard to be moved about…
put it together in the right way and you
can build a computer with control unit,
arithmetic logic unit, memory unit and
so on… (as long as you have enough
custard).

Out of the glooping vat of custard,
computation emerges….Would it really
work? You would have to build it to find
out!

A custard transistor: when there is
custard at the gate, custard flows
from source to drain. When no
custard is at the gate, the floating ball
drops and closes the link.

15 @cs4fn

https://twitter.com/cs4fn

16 www.cs4fn.org

Interested in nature and enjoying a nice
walk, you come across an unfamiliar tree,
and want to identify it. How do you do it?
You might work through a set of questions,
first looking at the leaves: what shape are
they, what colour, do they have stalks, do
they sit opposite each other on a twig or
are they diagonally placed, and so on. You
then move to questions about the bark…
Gradually, you narrow it down to one tree.

What, though, if your job is to check that
your company is buying the right timber
and the tree is cut up into logs (no leaves or
bark)? The task is the same, going through
a checklist of questions, just harder unless
you are an experienced botanist. Now you
consider things like the pattern of the grain,
the hardness, the colour and any scent
from the tree’s oils.

Historically, one way of working out
which piece of timber was in front of
you was to use a wood identification kit
or ‘wood computer’. This was prepared
(programmed!) from a pack of index cards
with 60 or more features of timber printed
on them. However, they weren’t just cards
to read but cards to compute with.

Holes and notches
The cards were special because they had
regularly placed holes round all four sides.
Each card had notches cut into different
holes. Each feature of the timber was linked
to one or more holes. The features were
grouped together around related properties:
so, for example, all the possible colours of
timber might be grouped together on one
section of the card. Properties about how
fine-grained the timber is would be grouped
in another section.

Each card represented one type of wood
and the ‘programmer’ of the cards would
notch the holes next to the features that
defined it. If a particular type of timber
was fine-grained you would add the notch
to the hole next to “fine-grained”, if it
wasn’t that hole would be left un-notched.
Notches were added for all relevant timber
properties making each card unique, with
a slightly different pattern of notches,
uniquely describing the features of the
tree it represents. (See an example of
an edge-notched card on page 17.)

How it works
To use a wood computer, take the pile of
cards, pick a feature of the timber in front

of you and insert a thin knitting needle
into the hole linked to the feature. Then
lifting the pile up shake out any cards
with notches in that hole. All of the cards
for timber that don’t have that feature
will have an un-notched hole and will
hang from your knitting needle. All cards
representing timber that does have that
feature are now sitting on the table.
Yours is somewhere amongst them.
If your timber is NOT fine-grained then
instead, when you put the knitting needle
in the fine-grained hole, keep those left on
the knitting needle.

You repeat the process several times to
whittle (sorry!) your cards down, each
time choosing another feature of the
timber in front of you. Eventually you have
only one card left and have identified your
timber.

Just the cards for the job
The cards are incredibly low tech,
requiring no electricity or phone signal
and are very easy to use even without
specialist botanical knowledge. All the
knowledge is programmed into them.
You also find the answer very quickly.
Margaret Chattaway, a botanist at the
Imperial Forestry Institute, Oxford, in the
1930s realised that was exactly what was
needed for their team inspecting timber
and so the original wood computer was
created.

So next time you are out for a walk, make
sure you have your knitting needle and
a suitable pile of cards with you. Then
identifying trees, birds, fungi or even
animal poo will be so much quicker
and simpler.

The Wood
Computer
by Jo Brodie, Queen Mary University of London

Punch cards inspired Babbage as he invented the first
Victorian computer, and were a way the first computers
stored data a hundred years later. Variations, called
edge-notched cards, had their uses before the first
working computers, though. They provided an efficient
way to look up information. One use was to help identify
timber: Oxford’s human-operated ‘wood computer’ was
used in forests world-wide.

16 cs4fn.blog

https://cs4fn.blog/

17 @cs4fn

Image by Peter H from Pixabay

E dge-
notched
cards and
R elational
D atabases
by Paul Curzon, Queen Mary
University of London

Edge-notched cards
implement a physical,
but still powerful,
version of a database:
an organised way of
storing data.
Databases consist of lots of records
each storing the information about one
thing like one kind of timber. Each card
in our pack corresponds to a record.
A whole pack of records about one thing
(like our pack of cards) is a database
table. Records consist of fields with each
field describing some aspect of the data
like what the grain of the timber is like.
Each group of related notches therefore
acts as a database field.

In a relational database you do not
have one gigantic set of records, so
not just one gigantic pack of cards.
You have a series of different sets of
records/cards. Each has fewer fields so
fewer holes as they no longer need to
store details of every possible feature.
Each smaller pack of cards is a table
describing a specific thing (like leaves
or bark). There is also still a master
pack describing trees as a whole. The
tree cards no longer have to include all
the details of leaves and bark, however.
Instead each table includes a unique
identifier field. Leaf cards include a leaf
identifier that is also on the tree’s card.
Bark cards similarly include a bark
identifier. Once you have identified
the leaf, you can use the leaf identifier
on the tree cards to find any trees
with that set of properties of leaf, then
narrow it down further once you know
the bark identifier. The smaller packs
of cards still do the job but in a much
more convenient way.

Why not create
an edge notched
card system for
something you are
interested in, for
identifying birds
perhaps or quickly
finding details of
films, or music or
of something you
collect?

 An edge-notched card for Bob Marley and the Wailers notched as a Reggae Group
with initials B-M-W: those three letters are notched, the other letters are un-notched.

17 @cs4fn

https://twitter.com/cs4fn

18 www.cs4fn.org

Image by Daniel Nebreda from Pixabay

T he beach, the
missionary and
my origin myth

by Paul Curzon, Queen Mary University of London

Superheroes always have an origin myth that describes
how they emerged as a hero. Spider-man has his spider
bite and death of his uncle; Batman, his fall into a cave
full of bats and the murder of his parents; Captain
Marvel was exposed to an alien energy source…
Why not work out your own origin myth? Everyone
should have one. Mine involves a beach, a book of
programs, and before that a missionary. It is the
backstory of how I became a computer scientist.

18 cs4fn.blog

https://cs4fn.blog/

19 @cs4fn

The beach
My origin myth usually begins with a
beach and a book containing some
programs, some articles about computers
and some computing cartoons. The
articles were vaguely interesting, some of
the cartoons were funny, but the program
listings were fascinating: a whole new
language that made computers tick.

At that point computers were way too
expensive for me to dream of owning one
(and in any case back then there were
no mobile computers so unlike now, you
certainly couldn’t take one to the beach).
All I had was my imagination, but that was
enough to get me started.

With nothing else to do on the beach (it
was too hot to move), I spent my time
lying in the sun reading programs and
trying to work out what they did and
how they did it. With no computer, all I
could do was pretend to be the computer
myself, stepping through the listings line
by line with paper and pen, writing out the
changing numbers stored (their variables)
and what they printed. I then moved on
to writing some simple game programs
myself, like a cricket game. I wrote them in
my notebook and again pretended I was
the computer to make them work. By the
end of the holiday I could program.

Ada Lovelace
I didn’t discover this till decades later
but Ada Lovelace, the famous Victorian
computer pioneer working with Charles
Babbage was in a similar position (well
sort of … she was a rich countess, I
wasn’t). She also had no computer as
Babbage hadn’t managed to fully build
his. She had no programming language
either to write programs in, or for that
matter any actual programs to read.
However, she had some algorithms
written by Babbage that he intended his

machine’s programs would be based on.
Just like me, she stepped through the
algorithms on paper, working out what
they would do (should Babbage ever
build his computer), step by step. As a
result she learnt about the machine and
as it happens also found a mistake in
one algorithm. The table she drew of the
computer working is often taken as proof
she was the ‘first programmer’, though as
Ursula Martin, who studied her papers,
has pointed out, it is not a program. It is
an execution trace or ‘dry run table’. She
was actually the first ‘execution tracer’ or
‘dry-runner’.

The importance of dry running code
Dry running programs like this on paper
is not just a useful thing for people with
no computer, it is also a critical thing for
anyone learning to program to do -
a way of actively reading programs. You
didn’t learn to write English (or any other
language) by just writing, you read lots
too and the same goes for programming.
It turns out that the way I taught myself to
program is a really, really powerful way to
do so.

Just as importantly dry running programs
on paper in this way is also important
as a way of checking that programs
work as Lovelace found. The modern
version is the code walkthrough - a
powerful technique that complements
testing programs as a way of discovering
problems.

The missionary
While that is the point in time when I
learnt to program, there was someone
earlier who originally inspired me about
computation: a missionary. Sadly I
don’t know his name, but he came to
our school to talk about his life as a
missionary in Papua New Guinea. He told
us that one of the problems of travelling

there was that communities were isolated
from each other and each village spoke
its own language. That meant that, as he
travelled around, he had a big problem
speaking to anyone. Every time he moved
on he had a new language to learn or an
old one of many to remember. It wasn’t
the idea of converting people, or travelling
to exotic places that means I remember
him more than 40 years later. It was what
he showed us next: how he solved the
problem. He pulled out a massive pile
of cards with holes punched round the
edges, labelled with letters. Each had a
word written on it in English as well as
words in other languages from different
places. He spelled out a word a letter at
a time (pig was the example he used) by
putting a knitting needle through a hole in
all the cards next to the letter. Those that
fell out were used for the next letter and
so on. After three rounds just the card for
pig fell out, as if by magic. It wasn’t magic
though, it was computation. On the pig
card he had cut notches in the holes for
p, i and g. As that was the only word with
those letters, it was the only card that
could fall out for all three letters and then
he could read off the translation for the
village he was in..

Bitten by a bug
What the missionary was showing us
was an edge-notched card system (see
the ‘Wood computer’, page 16). I was
fascinated and have been ever since
about computation, especially when
it’s done physically. It was that general
fascination for algorithms that led me
to want to learn to program.

In my origin story, I was bitten by a
bug: the missionary converted me…
to computer science.

Image by StockSnap from Pixabay

19 @cs4fn

https://twitter.com/cs4fn

Back (page)
to the
drawing
board
by Jo Brodie, Queen Mary University of London
Here are some more cunning contraptions,
with and without a purpose…

Bullseye!
Mark Rober, an engineer and YouTuber who
worked for NASA, has created a dartboard that
jumps in front of your dart to land you the best
score. Throw a dart at his board and infra-red
motion capture cameras track its path, and,
software (and some maths) predicts where it
will land. Motors then move the dartboard into a
better position to up the score in real time!

Search for: Rober dartboard

You switch me on…
In 1952 computer scientist and playful inventor,
Marvin Minsky, designed a machine which did
one thing, and one thing only. It switched itself
off. It was just a box with a motor, switch and
something to flip (toggle) the switch off again
after someone turned it on. Science fiction writer
Arthur C. Clarke thought there was something
‘unspeakably sinister’ about a machine that
exists just to switch itself off and hobbyist makers
continue to create their own variations today.

Search for: Ultimate Machine

Tie a knot in it
Quipu (the Quechua word for ‘knot’) are
knotted, and sometimes differently coloured,
strings, made from the hair fibres of llamas
or alpacas. They were used by people, such
as the Incas, living hundreds of years ago in
Andean South America. They used the quipu
to keep numeric trade or military records. A
‘database’ was formed of several of the strings
tied together at one end. Each string stored
numbers as different kinds of knots at different
positions along the strings, with positions
for ones, tens, hundreds, etc. It worked a bit
like an abacus, but with much less danger of
losing your work if you turn it upside down.

The number ‘1’ was represented as a figure-of-
eight knot in the ones position and ‘40’ could
be indicated by four simple knots in the tens
position. Not many quipu survive and even
fewer have been decoded, but anthropologists
have begun to find evidence that they might
contain not just numbers but a written (well,
a tactile) form too.

Search for: quipu knots

Look out, leeches!
When we leave our homes we might check
a weather app to give us predictions from
number-crunching computers, to see if we’ll
need an umbrella, but in the mid-1800s the
appropriately named George Merryweather
thought he’d make use of the alleged weather-
predicting properties of leeches to create a
‘leech barometer’ to measure the weather.
His notion relied on the belief that leeches,
kept inside small glass bottles, would try and
escape when a storm was due (because they
might be more sensitive to subtle changes
in electrical conditions in the air that we
humans would miss). The escaping leeches
would trigger a small hammer placed above
the bottles which would strike a bell and
alert everyone in earshot that a storm might
be imminent and also that your living room
was about to be overrun with leeches. Not
surprisingly it wasn’t very popular, though
Merryweather claimed to have great success
with it.

Search for: Tempest Prognosticator

A pat on the shoulder
In lockdown, during the Covid-19 pandemic,
inventor and roboticist Simone Giertz
created a coin-operated ‘proud parent
machine’ which, for 25 US cents, would pat
her on the shoulder and give a few words of
encouragement. Putting in a coin sent a signal
to a microcontroller that turned a motor on
which lowered a 3D-printed arm (to pat her
shoulder), then played a pre-recorded audio
file telling her how proud of her the automaton
was. Making the machine involved skills
in woodworking, computer-aided design,
mechanics and electronics. She also gave a
TED Talk called “Why you should make useless
things”.

Search for: well done Simone Giertz

cs4fn is edited by Paul Curzon and Jo Brodie of Queen Mary University of London. Spring 2022. Thanks to Sue White and Jane Waite for proof reading. Ursula Martin and
Adrian Johnstone have provided advice and explanations. This magazine was funded by UKRI, through grant EP/K040251/2 held by Professor Ursula Martin and forms
part of a broader project on the development and impact of computing, as well as grant EP/W033615/1. Further funding was provided by Paul Curzon. Cover Image by
Oleg Gamulinskiy from Pixabay. Paul Curzon writes and edits cs4fn in his own time. Magazine design by Kelly Burrows, kellyburrows@gmail.com

Image by Tim Bastian from Pixabay

Image by Drpixie from Wikipedia (CC BY-SA 4.0)

cs4fn.blog

